## 810. Molecular Polarisability: The Dipole Moment, Molar Kerr Constant, and Space Formula of Tröger's Base as a Solute in Benzene.

By M. ARONEY, L. H. L. CHIA, and R. J. W. LE FÈVRE.

In benzene as solvent, Tröger's base has a dipole moment of  $1.0_1$  D, and a molar Kerr constant of  $-17 \times 10^{-12}$ . Scale models (Barton type) suggest three possible conformations for which the calculated molar Kerr constants are -46, -14, and  $-52 \times 10^{-12}$ , respectively. It is concluded that as a solute Tröger's base exists largely in the second conformation in which the Ar-rings are nearly perpendicular to one another and the CH<sub>2</sub>·N·CH<sub>2</sub>·N units are non-planar in a way resembling the  $-[CH_2]_4$  unit in trans-tetralin.

THE base  $C_{17}H_{18}N_2$ , isolated in 1887 by Tröger <sup>1</sup> from *p*-toluidine and formaldehyde, was shown by Spielman<sup>2</sup> in 1935 to have structure (I) in preference to others which had been previously suggested.<sup>1,3</sup> Prelog and Wieland<sup>4</sup> noted that the model of (I) was dis-



symmetric and effected the first optical resolution by chromatographic adsorption. More recently Wepster 5 has considered its spatial formulation in connection with spectral studies of mesomerism among aromatic amines; he observes that with usual interatomic distances and intervalency angles two almost strain-free constructions are possible: configurations T and C.

In T the Ar-rings are nearly perpendicular to each other; this is the "trans"-form, depicted in Fig. 1 where the Ar-rings are represented as hexagons, the two nitrogen atoms are



labelled  $N_3$ ,  $N_4$ , and the two methyl groups attached to the Ar-rings *para* to the nitrogen atoms are not shown. The nitrogen atoms and some of the carbon atoms are labelled to relate to Figs. 3 and 4. In configuration C the Ar-rings are in an "extended" disposition (Fig. 2 illustrates this model). If, in  $C_6H_5$ ·NX<sub>2</sub>, the X-X line makes an angle  $\phi$  with the C<sub>6</sub>H<sub>5</sub> plane, then, for Tröger's base as configuration T,  $\phi$  is ca. 45°, while as configuration C, it is ca. 80°; further, the heterocyclic rings are not flat in either arrangement, but in relation to the annellated  $C_6$  rings have conformations in forms T and C

- <sup>2</sup> Spielman, J. Amer. Chem. Soc., 1935, 57, 583.
   <sup>3</sup> Eisner and Wagner, J. Amer. Chem. Soc., 1934, 56, 1938.
   <sup>4</sup> Prelog and Wieland, Helv. Chim. Acta, 1944, 27, 1127.
- <sup>5</sup> Wepster, Rec. Trav. chim., 1953, 72, 661.

Tröger, J. prakt. Chem., 1887, 36, 227.

resembling those 6 of the  $-[CH_2]_4$  portions of *trans*- and *cis*-tetralin respectively. Wepster 5 notes that the models show Tröger's base to be "definitely not absolutely rigid" and that "configurations T and C can be converted into each other fairly easily," although some angle-strain has to be overcome during the process; he concludes "there can be no doubt that T is several kilocalories more stable than C."

Whether Tröger's base as a solute is a single form or a mixture seemed at the outset to be a question probably answerable by considerations of molecular polarisability.

Experimental.—Tröger's base was prepared from hydrochloric acid saturated with hydrogen chloride (70 c.c.), 40% aqueous formaldehyde (70 c.c.), and p-toluidine (20 g.) in ethanol (200 c.c.), essentially by Goecke's method.<sup>7</sup> Yields were low and variable (cf. Wagner's comments on the reactions involved <sup>8</sup>); after many recrystallisations from aqueous alcohol (charcoal) about 4 g. of white needles, m. p. 135-136°, were obtained.

Infrared spectra were taken of mulls in Nujol and hexachlorobutadiene; absorptions (cm.<sup>-1</sup>) due to Tröger's base were:

| 1495—1497s | 1225w   | 1142w/m           | 1040 vw | 898m          | 747w |
|------------|---------|-------------------|---------|---------------|------|
| 1440w      | 1210m   | 1112m             | 963m/s  | 87 <b>3</b> w | 740w |
| 1412w      | 1195w/m | 1097m             | 956sh   | 865w          | 713w |
| 1328m      | 1163w   | $1065 \mathrm{m}$ | 942 sh  | 830s          | 689w |

Apart from absorptions characteristic of C-H links (2960-2910, and 2855 cm.<sup>-1</sup>), the substance was transparent over the region associated with N-H groups, a fact which formally invalidates the structure proposed by Eisner and Wagner; <sup>3</sup> likewise the absence of absorption between 1600 and 1700 cm.<sup>-1</sup>, where C=N should <sup>9</sup> reveal itself, is against Tröger's original formula,  $(Me \cdot C_6H_4 \cdot N = CH)_2CH_2.$ 

Measurements of the dipole moment, molecular refraction, and molar Kerr constant of Tröger's base in benzene, obtained by methods described in refs. 10–12, are summarised under the usual headings in Table 1. The various constants required for benzene at  $25^{\circ}$  are:

 $(n_{\rm D})_1 = 1.4973$   $p_1 = 0.34086$  C = 0.18809 $\begin{array}{l} \epsilon_1 = 2 \cdot 2725 \\ d_1 = 0 \cdot 87378 \\ B_1 = 0 \cdot 410 \ \times \ 10^{-7} \end{array}$ H = 2.114J = 0.4681 $_{8}K_{1} = 7.56 \times 10^{-14}$ 

Definitions of symbols used, and details of the calculations involved, are given in ref. 11, pp. 280-283, and ref. 12, pp. 2486-2490.

TABLE 1. Incremental dielectric constants, densities, refractive indexes, and electric birefringences for solutions containing weight fractions w<sub>2</sub> of Tröger's base in benzene at  $25^{\circ}$ 

| 10 <sup>5</sup> w,              |                  | 906    | 2689      | 3122                  | 3357             | 3937                     | 4367              |     | 4584 |
|---------------------------------|------------------|--------|-----------|-----------------------|------------------|--------------------------|-------------------|-----|------|
| 10 <sup>4</sup> Δε              |                  | 66     | 205       | 255                   | 262              | 323                      | 358               |     | 391  |
| $10^{5}\Delta d$                |                  | 163    | 547       | <b>620</b>            | 721              | 843                      | 901               |     | 934  |
| $10^4\Delta n$                  |                  | 6      | <b>25</b> | 29                    | 36               | 39                       | 44                |     | 48   |
| $10^{5}w_{2}$                   |                  | 709    | 1157      | 1692                  | 1943             | 3039                     | 3825              | ٦   |      |
| $10^{4}\Delta \tilde{\epsilon}$ |                  | 57     | 79        | 129                   | 165              | 237                      | 321               | Y   | *    |
| $10^{5}\Delta d$                |                  | 147    | 228       | 355                   | 414              | 637                      | 715               | J   |      |
| $10^{5}w_{2}$                   |                  | 3357   | 4551      | 4584                  | 4941             | 5397                     |                   | -   |      |
| $-10^{11}$                      | $\Delta B \dots$ | 180    | 221       | 237                   | <b>250</b>       | <b>272</b>               |                   |     |      |
| whenc                           | e SAelSm -       | 0.806. | SAd/Sam - | $0.204 \cdot \Sigma/$ | $\ln \sum m = 0$ | $0.076.5 \Sigma \Lambda$ | $R/\Sigma_{10} =$ | -0. | 508. |

 $\Delta d / \sum w_2 = 0.2045, \quad \sum w_2 = 20206,$ and  $\sum (n_{12}^2 - n_1^2) / \sum w_2 = 0.296,$  $\varepsilon/\Delta w_2$  $0.00_{6}; \ \underline{\Delta}\Delta B/\underline{\Delta}W_{2}$ 

\* Determinations made by Mr. D. D. Brown, on another preparation, during 1949.

<sup>6</sup> de Jong, quoted in ref. 5 from Thesis, Amsterdam, 1951.

<sup>7</sup> Goecke, Z. Elektrochem., 1903, 9, 473.

<sup>10</sup> Goecke, Z. Liewirochem., 1954, 19, 1862.
<sup>8</sup> Wagner, J. Org. Chem., 1954, 19, 1862.
<sup>9</sup> Fabian and Legrand, Bull. Soc. chim. France, 1956, 1461.
<sup>10</sup> Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, Chap. II.
<sup>11</sup> Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
<sup>12</sup> Le Fèvre and Le Fèvre, Chap. 36 in "Physical Methods of Organic Chemistry," Interscience Publ., Inc., New York, 3rd edn., 1960.

In the equations:  ${}_{\infty}P_2 = M_2[p_1(1-\beta) + C\alpha\epsilon_1]$  and  ${}_{\infty}({}_{m}K_2) = M_2[{}_{s}K_1(1-\beta+\gamma+\delta-H\gamma-J\alpha\epsilon_1)]$  we have, from the tabulated data,  $\alpha\epsilon_1 = 0.806_2$ ,  $\beta = 0.234_0$ ,  $\gamma = 0.051_2$ ,  $\delta = -1.23_9$ , so that  ${}_{\infty}P_2 = 103\cdot3$  c.c. and  ${}_{\infty}({}_{m}K_2) = -17\cdot2 \times 10^{-12}$ ,  $R_2 = 78\cdot4$  c.c. and  $\mu = 1.01$  D (if the distortion polarisation is  $1.05R_{\rm D}$ ).

Discussion.—As a preliminary we have examined Barton-type models of the base (I), using inter-centre distances: <sup>13</sup> C-C, 1.54 Å,  $C_{Ar}$ - $C_{Ar}$ , 1.39 Å, and C-N, 1.47 Å. A third conformation, in which all the carbon atoms to the right of the N···N line lie in one plane and all those to the left in another, is thus revealed as not excessively strained (although this conformation is not illustrated, Fig. 3 serves to explain further its characteristics). This conformation we term form P (= planar). Our procedure has been to calculate the principal polarisabilities  $b_1$ ,  $b_2$ , and  $b_3$  expected for the three conformations,



thence to compute the corresponding molar Kerr constants, and finally to compare the  ${}_{m}K$ 's so produced with that determined by experiment.

Anisotropic bond and group polarisabilities required were: 11, 12, 14

| с-н   | C-C                            | C-N                                                                                                       | $C_6H_3$                                                                                                                                                        |
|-------|--------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.064 | 0.099                          | 0.057                                                                                                     | 0.928                                                                                                                                                           |
| 0.064 | 0.027                          | 0.069                                                                                                     | 0.928                                                                                                                                                           |
| 0.064 | 0.027                          | 0.069                                                                                                     | 0.544                                                                                                                                                           |
|       | C-H<br>0·064<br>0·064<br>0·064 | C-H         C-C           0.064         0.099           0.064         0.027           0.064         0.027 | C-H         C-C         C-N           0·064         0·099         0·057           0·064         0·027         0·069           0·064         0·027         0·069 |

The various inter-bond angles also needed were obtained where possible by calculation, and otherwise by direct measurement of the models.

Fig. 3 shows part of structure P. The plane  $N_3CN_4$  is assumed to be at 120° to each of the planes containing all the carbon and nitrogen atoms of the molecule, other than the carbon of the apical methylene group. With the angles  $C_1C_2N_3$ ,  $C_5C_1C_2$ , and  $N_4C_5C_1$  at 109° 28′, 120°, and 120°, respectively, that for  $N_3CN_4$  becomes 101° 3′ and the centre-centre distance from  $N_3$  to  $N_4$  is 2.27 Å. (Such an N-C-N angle is smaller than normal,<sup>13</sup> cf. 108° ± 4° in NMe<sub>3</sub>, but not impossible, cf. 99° in nickel phthalocyanine <sup>13</sup> or 95° in potassium benzylpenicillin <sup>13</sup>). Arbitrary axes OX, OY, and OZ (O being midway between  $N_3$  and  $N_4$ ) are imposed on the structure, with OX along  $N_4ON_3$ , OZ along OC, and OY, perpendicular to OX and OZ;  $b_{XX}$ ,  $b_{XY}$ ,  $b_{XZ}$ ,  $b_{YX}$ ,  $b_{YY}$ , etc., are then evaluated, and  $b_1$ ,  $b_2$ , and  $b_3$  obtained, together with the nine direction cosines locating them in the OX, OY, OZ framework, by the method outlined in ref. 12, p. 2486.

<sup>13</sup> Sutton, "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ. No. 11, 1958.

<sup>14</sup> Aroney and Le Fèvre, J., 1958, 3002.

Results emerge as follows:

|                                                | Di               | rection cosines w | vith           |                                                                                       |
|------------------------------------------------|------------------|-------------------|----------------|---------------------------------------------------------------------------------------|
|                                                | OX               | OY                | OZ             |                                                                                       |
| $10^{23}b_1 = 3.25_8$                          | <br>+0.9624      | -0.2715           | 0              | $\mu_1 = \mu_2 = 0, \mu_3 = 1.01 \text{ D},$                                          |
| $10^{23}b_2 = 3.03_5$<br>$10^{23}b_2 = 2.59_2$ | <br>+0.2715<br>0 | +0.9624<br>0      | $^{0}_{\pm 1}$ | $\begin{cases} \text{and } _{m} \text{ A calc.} = -46 \\ \times 10^{-12} \end{cases}$ |

Fig. 4 shows part of structure T, which differs from P in that, while atoms  $C_2$  and  $N_4$  remain in-plane with the Ar-ring,  $N_3$  is out-of-plane and situated below this plane (if the apical carbon is regarded as above it). Measurement of the model gives 15° as the angle which the bond  $C_2N_3$  makes with its projection  $C_2N_3'$  on to the plane  $C_2C_1C_5N_4$ . Since the two Ar-ring-planes appear to be at 90° to one another, the line of intersection of these planes defines the OX direction (Fig. 4). The mid-point O of  $MN_3'$  is the origin of our arbitrary axes so that OY is in the plane of one Ar-ring and OZ in that of the other. Calculation as before gives:

|                       | Dir         | ection cosines | with      |                                      |
|-----------------------|-------------|----------------|-----------|--------------------------------------|
|                       | OX          | OY             | OZ        |                                      |
| $10^{23}b_1 = 3.21_7$ | <br>+0.9938 | -0.0789        | —0∙0789 ) | $\mu_1=\mu_2=0, \mu_3=1{\cdot}01$ d, |
| $10^{23}b_2 = 2.82_8$ | <br>+0.1116 | +0.7027        | +0.7027 > | and $_{\rm m}K$ calc. = $-14$        |
| $10^{23}b_3 = 2.84_0$ | <br>0       | -0.7071        | +0.7071 ∫ | imes 10 <sup>-12</sup>               |

In structure C the Ar-rings are "extended" more than in T, and their planes intersect at about 45°; atom  $N_3$  is out-of-plane with its p-tolyl nucleus and on the same side as is the apical carbon. The line  $C_2N_4$  is chosen as the OX axis, with OY in the plane of the nearer Ar-ring, and OZ mutually perpendicular to OX and OY. The angles between these axes and the various bonds in the molecule are measured by hand (experience of repeated assembly, dismantling, and reassembly of Barton models shows that these can be thus estimated within 1°). For conformation C we find:

Direction cosines with

|                           | OX          | OY      | OZ      |                                         |
|---------------------------|-------------|---------|---------|-----------------------------------------|
| $10^{23}b_1 = 3.05_8$     | <br>+0.8621 | -0.2655 | +0.4316 | ) $\mu_1 = 0.100$ d, $\mu_2 = 0.028$ d, |
| $10^{23}b_{2} = 3.33_{6}$ | <br>+0.3223 | +0.9446 | -0.0626 | $\mu_{3} = 1.00$ D, and mK calc.        |
| $10^{23}b_{2} = 2.49_{1}$ | <br>-0.3910 | +0.1930 | +0.8999 | $= -52 \times 10^{-12}$                 |

Finally, as a check on our calculations above, we note that the sums  $(b_1 + b_2 + b_3)$  for conformations P, T, or C are  $8.88_5 \times 10^{-23}$  c.c.: this corresponds to an electronic polarisation of 74.7 c.c. The observed  $R_D$  is 78.4 c.c. from which, if (as is often the case)  $_{\rm E}P = ca.\ 0.95R_{\rm D}, _{\rm E}P$  is 74.5 c.c.

Since the molar Kerr constants expected for the P, T, and C conformations are respectively -46, -14, and  $-52 \times 10^{-12}$ , and the value found by experiment is  $-17 \times 10^{-12}$  Tröger's base as a solute in benzene evidently exists largely as form T; on the data quoted a content of form T of 90% at least is indicated.

Financial assistance from Monsanto Chemicals (Australia) Limited is gratefully acknow-ledged.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, February 10th, 1961.]